

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Dalapro Maximum, Dalapro Lightning Maximum, Dalapro Roll Maximum

Dalapro[®]

The Norwegian EPD Foundation

Owner of the declaration:

Saint-Gobain Sweden AB, Scanspac

Product:

Dalapro Maximum, Dalapro Lightning Maximum, Dalapro Roll Maximum

Declared unit:

1 kg

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR

NPCR 009:2018 Part B for Technical - Chemical products in the building and construction industry

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-4870-4135-EN

Registration number:

NEPD-4870-4135-EN

Issue date: 31.08.2023

Valid to: 31.08.2028

EPD Software:

LCA.no EPD generator ID: 68908

General information

Product

Dalapro Maximum, Dalapro Lightning Maximum, Dalapro Roll Maximum

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no

Declaration number:

NEPD-4870-4135-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 009:2018 Part B for Technical - Chemical products in the building and construction industry

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg Dalapro Maximum, Dalapro Lightning Maximum, Dalapro Roll Maximum

Declared unit with option:

A1,A2,A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Owner of the declaration:

Saint-Gobain Sweden AB, Scanspac Contact person: Christian Borgenfalk Phone: +46 (0)19-46 34 00 e-mail: ehs.scanspac@dalapro.com

Manufacturer:

Saint-Gobain Sweden AB, Scanspac

Place of production:

Saint-Gobain Sweden AB, Scanspac Kemivägen 7 SE-705 97 Glanshammar, Sweden

Management system:

ISO 9001, ISO 14001

Organisation no:

556241-2592

Issue date: 31.08.2023

Valid to: 31.08.2028

Year of study:

2022

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Ellinor Johansson

Reviewer of company-specific input data and EPD: Christian Borgenfalk

Approved:

Håkon Hauan Managing Director of EPD-Norway

Anne Rønning, Norsus AS (no signature required)

Product

Product description:

Dalapro Maximum/Lightning Maximum and Roll Maximum is a ready-mixed fillers with very high filling capacity. Smooth to apply and easy to sand. Minimal risk of blister formation on non-absorbent substrates. Suitable for pre-filling and fine smoothing of walls and ceilings in new construction and renovation. Suitable for most substrates and produces a fine surface that can be painted directly after sanding. Grey. Nordic Ecolabelled. IAC Gold. Low-shrink technology protected by patent pending EP 3943466A1.

Product specification

Packaging:

Dalapro Maximum: 3 and 10 litres buckets.

Dalapro Lightning Maximum: 15 litre bucket and 15 litre plastic bag.

Dalapro Roll Maximum: 12 litre bucket.

All buckets (3, 10, 12 and 15 litre) are manufactured in 100 % recyclable plastic and consists of at least 90 % recycled plastic.

Materials	Value	Unit
Filler dolomite	20-50	%
Water	20-50	%
Binder	2,5-10	%
Additives	1-2,5	%
Packaging		
Pallet		
Filler pumice	2,5-10	%
Filler expanded alumina silicate	2,5-10	%
Filler perlite	2,5-10	%

Technical data:

TECHNICAL DATA

Binding agent: Latex co-polymer

Solvent: Water

Grain size: Max. 0,35 mm

pH: Approx. 9 Colour: Grey

Market:

Europe

Reference service life, product

Filler has a limited shelf life and is date-marked. Unopened packaging can be kept in a dark place, free from frost, for up to 12 months. Containers that have been opened must be sealed well.

Reference service life, building

LCA: Calculation rules

Declared unit:

1 kg Dalapro Maximum, Dalapro Lightning Maximum, Dalapro Roll Maximum

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

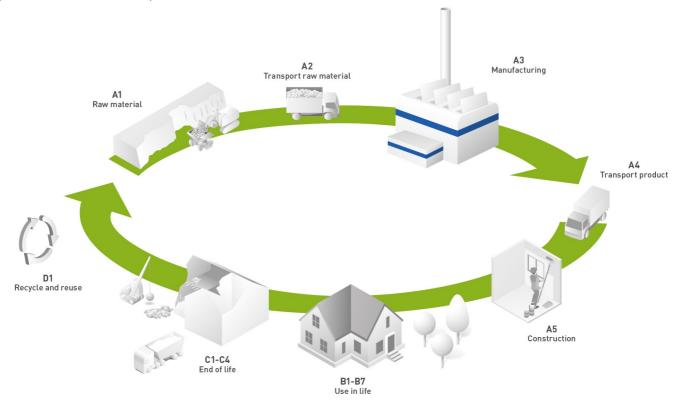
Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Dalapro[®]

Materials	Source	Data quality	Year
Additives	ecoinvent 3.6	Database	2019
Aggregate	ecoinvent 3.6	Database	2019
Cellulose Ether	ecoinvent 3.6	Database	2019
Filler	ecoinvent 3.6	Database	2019
Packaging	ecoinvent 3.6	Database	2019
Water	ecoinvent 3.6	Database	2019
Chemical	LCA.no	Database	2021
Binders and Resins	MD-22112-EN	EPD	2022
Packaging	Modfied ecoinvent 3.6	Database	2019
Packaging	Modified ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

P	Product stage Construction installation stage				Use stage							End of life stage				Beyond the system boundaries
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Х	X	X	X	X	MND	MND	MND	MND	MND	MND	MND	X	Χ	X	X	X


System boundary:

A1-A5: All processes from raw material extraction, transport of raw material to production site, production, transport to the construction site and assembly are included in the analysis.

B1-B5: The user stage is not considered in this EPD.

C1-C4 and D: End of life stage and phases beyond the system boundary is part of the EPD.

System boundaries shows in the picture below.

Additional technical information:

The product meets CE-marking requirements in accordance with EN 15824.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6	53,3 %	300	0,023	l/tkm	6,90
Assembly (A5)	Unit	Value			
Waste, packaging, pallet, EUR wooden pallet, reusable, to average treatment (kg)	kg	0,05			
Waste, packaging, plastic (LDPE), to average treatment (kg)	kg	0,00			
Waste, packaging, Polypropylene (PP), to average treatment (kg)	kg	0,05			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 5	53,3 %	50	0,023	l/tkm	1,15
Waste processing (C3)	Unit	Value			
Waste treatment of product after demolition (kg)	kg	0,90			
Disposal (C4)	Unit	Value			
Disposal of product in landfill (kg)	kg	0,10			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of primary aggregates with crushed recycled products (kg)	kg	0,90			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Envir	Environmental impact												
	Indicator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D	
	GWP-total	kg CO ₂ - eq	1,17E-01	3,45E-02	1,33E-02	2,61E-02	8,30E-02	0	4,55E-03	6,48E-04	8,22E-04	-2,10E-03	
	GWP-fossil	kg CO ₂ - eq	1,87E-01	3,45E-02	1,18E-02	2,61E-02	3,79E-03	0	4,54E-03	6,39E-04	8,20E-04	-2,06E-03	
	GWP-biogenic	kg CO ₂ - eq	-7,16E-02	1,39E-05	1,45E-03	1,12E-05	7,93E-02	0	1,86E-06	5,52E-06	9,58E-07	-4,11E-05	
	GWP-luluc	kg CO ₂ - eq	1,18E-03	1,22E-05	6,77E-06	7,96E-06	3,03E-07	0	1,33E-06	8,84E-07	2,02E-07	-1,39E-06	
٨	ODP	kg CFC11 - eq	2,19E-08	8,09E-09	6,28E-10	6,30E-09	2,34E-10	0	1,05E-09	1,26E-10	3,11E-10	-3,75E-10	
Œ.	АР	mol H+ -eq	1,73E-03	2,51E-04	8,57E-05	8,41E-05	5,15E-06	0	1,91E-05	5,17E-06	7,30E-06	-1,85E-05	
-	EP-FreshWater	kg P -eq	9,74E-06	2,55E-07	4,34E-07	2,08E-07	8,49E-09	0	3,47E-08	4,04E-08	9,30E-09	-5,48E-08	
4	EP-Marine	kg N -eq	1,94E-04	6,13E-05	5,92E-05	1,84E-05	4,43E-06	0	5,74E-06	1,52E-06	2,71E-06	-6,43E-06	
4	EP-Terrestial	mol N - eq	2,05E-03	6,82E-04	3,89E-04	2,05E-04	1,90E-05	0	6,35E-05	1,75E-05	2,99E-05	-7,56E-05	
	POCP	kg NMVOC -eq	7,05E-04	2,07E-04	6,76E-05	8,07E-05	6,07E-06	0	2,04E-05	4,68E-06	8,56E-06	-2,00E-05	
	ADP- minerals&metals ¹	kg Sb - eq	3,51E-06	5,76E-07	8,25E-08	4,66E-07	2,09E-08	0	7,76E-08	8,11E-09	7,39E-09	-1,83E-07	
	ADP-fossil ¹	МЈ	3,87E+00	5,38E-01	4,39E-02	4,24E-01	1,61E-02	0	7,07E-02	1,98E-02	2,26E-02	-3,49E-02	
<u>%</u>	WDP ¹	m ³	7,93E+01	3,84E-01	-9,29E-01	3,25E-01	5,54E-02	0	5,42E-02	2,19E+00	1,39E-01	-1,63E+00	

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Dalapro[®]

Addi	Additional environmental impact indicators												
Ind	icator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D	
	PM	Disease incidence	1,08E-08	2,68E-09	1,45E-09	2,40E-09	9,00E-11	0	4,00E-10	8,40E-11	1,57E-10	-3,95E-10	
(m)	IRP ²	kgBq U235 -eq	3,30E-02	2,35E-03	1,57E-04	1,85E-03	7,22E-05	0	3,09E-04	3,33E-04	1,03E-04	-3,20E-04	
	ETP-fw ¹	CTUe	5,75E+00	3,85E-01	1,35E-01	3,10E-01	1,56E-02	0	5,17E-02	1,41E-02	1,23E-02	-3,59E-02	
48.×	HTP-c ¹	CTUh	3,99E-10	0,00E+00	1,00E-11	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	-1,00E-12	
% E	HTP-nc ¹	CTUh	4,04E-09	3,40E-10	3,12E-10	3,00E-10	1,80E-11	0	5,00E-11	1,20E-11	8,00E-12	-4,40E-11	
	SQP ¹	dimensionless	4,07E+00	5,48E-01	1,50E+00	4,87E-01	2,72E-02	0	8,11E-02	1,12E-02	8,69E-02	7,91E-02	

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Dalapro®

Resource	e use											
Ind	licator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
i, i	PERE	MJ	1,05E+00	6,47E-03	1,35E-01	5,34E-03	4,04E-04	0	8,90E-04	1,02E-02	8,08E-04	-8,16E-03
4	PERM	MJ	7,27E-01	0,00E+00	0,00E+00	0,00E+00	-7,26E-01	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
₽,	PERT	MJ	1,77E+00	6,47E-03	1,35E-01	5,34E-03	-3,59E-02	0	8,90E-04	1,02E-02	8,08E-04	-8,16E-03
	PENRE	MJ	2,67E+00	5,38E-01	4,39E-02	4,24E-01	1,61E-02	0	7,07E-02	1,99E-02	2,26E-02	-3,68E-02
Åe	PENRM	MJ	1,55E+00	0,00E+00	0,00E+00	0,00E+00	-1,55E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
IA	PENRT	MJ	4,22E+00	5,38E-01	4,39E-02	4,24E-01	-1,53E+00	0	7,07E-02	1,99E-02	2,26E-02	-3,68E-02
	SM	kg	4,47E-02	0,00E+00	5,00E-04	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
2	RSF	MJ	1,24E-02	2,22E-04	9,51E-05	1,87E-04	1,06E-05	0	3,11E-05	0,00E+00	1,68E-05	-1,67E-04
Ø.	NRSF	MJ	5,84E-03	8,48E-04	6,02E-04	6,26E-04	3,22E-05	0	1,04E-04	0,00E+00	3,62E-05	-1,71E-04
&	FW	m ³	4,98E-03	5,75E-05	4,85E-04	4,83E-05	8,70E-06	0	8,05E-06	3,40E-05	2,78E-05	-1,28E-03

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Dalapro®

End of li	End of life - Waste												
Indicator		Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D	
	HWD	kg	2,32E-03	2,87E-05	4,92E-03	2,32E-05	0,00E+00	0	3,87E-06	1,98E-06	0,00E+00	-8,40E-06	
Ū	NHWD	kg	7,06E-02	4,10E-02	3,73E-03	3,69E-02	4,95E-02	0	6,15E-03	6,26E-05	1,00E-01	-2,55E-04	
8	RWD	kg	2,38E-05	3,68E-06	1,88E-07	2,90E-06	0,00E+00	0	4,83E-07	2,10E-07	0,00E+00	-2,76E-07	

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Er	End of life - Output flow												
	Indicator		Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
	Ø D	CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	\$}	MFR	kg	3,11E-03	0,00E+00	1,01E-03	0,00E+00	2,49E-02	0	0,00E+00	9,00E-01	0,00E+00	0,00E+00
	DF	MER	kg	5,44E-05	0,00E+00	4,74E-05	0,00E+00	2,35E-06	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	50	EEE	MJ	5,52E-03	0,00E+00	7,47E-03	0,00E+00	1,14E-03	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	D.	EET	MJ	8,35E-02	0,00E+00	1,13E-01	0,00E+00	1,72E-02	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content											
Unit	At the factory gate										
kg C	0,00E+00										
kg C	2,16E-02										
	kg C										

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Renewable electricity Saint-Gobain, based on 100% hydro power, with Guarantee of Origin from LOS 2021 (kWh)	ecoinvent 3.6	4,26	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Nordic Ecolabel M1- classified IAC Gold certified

Additional Environmental Information

Additional e	Additional environmental impact indicators required in NPCR Part A for construction products												
Indicator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D		
GWPIOBC	kg CO ₂ -eq	2,07E-01	3,45E-02	2,36E-03	2,61E-02	0,00E+00	0	4,55E-03	1,19E-03	0,00E+00	-2,20E-03		

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21

Iversen et al., (2019) EPD generator for Saint-Gobain Weber and Scanspac - Background information and LCA data, LCA.no report number 05.18

Iversen et al., (2020) EPD generator for Saint-Gobain Weber Nordics and Scanspac Background information for customer application, and LCA data – Supplementary report for modules A5, C and D, LCA.no report number 04.20

NPCR Part A: Construction products and services. Ver. 2.0, 24.03.2021 EPD Norway.

NPCR 009 Part B for technical-chemical products. Ver. 2.0 October 2021, EPD-Norge.

@ and narway	Program operator and publisher	Phone: +47 23 08 80 00
© epd-norway	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
	Owner of the declaration:	Phone: +46 (0)19-46 34 00
D alapro*	Saint-Gobain Sweden AB, Scanspac	e-mail: ehs.scanspac@dalapro.com
	Kemivägen 7 , SE-705 97 Glanshammar	web: www.dalapro.se
LCA	Author of the Life Cycle Assessment	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
	Dokka 6B, 1671	web: www.lca.no
	Developer of EPD generator	Phone: +47 916 50 916
(LCA	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6B,1671 Kråkerøy	web: www.lca.no
ECO PLATFORM	ECO Platform	web: www.eco-platform.org
VERIFIED	ECO Portal	web: ECO Portal